AskDefine | Define radio

Dictionary Definition

radio adj : indicating radiation or radioactivity; "radiochemistry"


1 medium for communication [syn: radiocommunication, wireless]
2 an electronic receiver that detects and demodulates and amplifies transmitted signals [syn: radio receiver, receiving set, radio set, tuner, wireless]
3 a communication system based on broadcasting electromagnetic waves [syn: wireless] v : transmit messages via radio waves; "he radioed for help"

User Contributed Dictionary



From radius


  • (RP): /ˈɹeɪdiˌəʊ/, /"reIdi%@U/
  • (GenAm): /ˈɹeɪdiˌoʊ/, /"reIdi%oU/


  1. The technology that allows for the transmission of sound or other signals by modulation of electromagnetic waves.
  2. A device that can capture (receive) the signal sent over radio waves and render the modulated signal as sound.
  3. A device that can transmit radio signal.


device to capture radio signal
  • Breton: radio , skingomz
  • Croatian: radio
  • Finnish: radio, radiotekniikka
  • French: radio
  • German: Funk
  • Greek: ραδιόφωνο (radiófono), ράδιο (rádio)
  • Italian: radio
  • Japanese: ラジオ (rajio)
  • Korean: 라디오 (radio)
  • Latvian: radio
  • Polish: radio
  • Russian: радио (rádio) , радиовещание (radiov'eš'ánije)
  • Spanish: radio
  • Swedish: radio
  • Croatian: radioodašiljač, radio
  • Finnish: radio, radiolähetin
  • Polish: radio, radionadajnik, * radiostacja
  • Russian: радио, радиопередатчик, радиостанция


  1. To send a message by radio
    ''I think the boat is sinking, we'd better radio for help.
    Usage note: Used for small radio transmitters carried by people, ships, etc, not for regular radio broadcasting to large audiences.



  1. radio, tuner

Crimean Tatar







Useinov-Mireev 2002}}



Extensive Definition

This article is about radio as a technology. For other uses, including radio broadcasting as an art form, see Radio (disambiguation).
Radio is the transmission of signals, by modulation of electromagnetic waves with frequencies below those of visible light. Electromagnetic radiation travels by means of oscillating electromagnetic fields that pass through the air and the vacuum of space. Early speculation that this required a medium of transport, called luminiferous aether, were found to be false. Information is carried by systematically changing (modulating) some property of the radiated waves, such as amplitude, frequency, or (more recently) phase. When radio waves pass an electrical conductor, the oscillating fields induce an alternating current in the conductor. This can be detected and transformed into sound or other signals that carry information.
James Clerk Maxwell, a Scottish scientist, developed the theoretical basis for explaining electromagnetism. He predicted that electric and magnetic fields can couple together to form electromagnetic waves. Heinrich Hertz, a German scientist, is credited with being the first to produce and detect such waves at radio frequencies, in 1888, using a sparkgap transmitter in the Ultra High Frequency range. In 1893, Nikola Tesla, in America, first demonstrated the feasibility of wireless communications. Guglielmo Marconi, an Italian inventor, was one of the first to develop workable commercial radio communication. It is supposed that he sent and received his first radio signal in Italy in 1895.


Originally, radio or radiotelegraphy was called 'wireless telegraphy', which was shortened to 'wireless'. The prefix radio- in the sense of wireless transmission was first recorded in the word radioconductor, coined by the French physicist Edouard Branly in 1897 and based on the verb to radiate (in Latin "radius" means "spoke of a wheel, beam of light, ray"). 'Radio' as a noun is said to have been coined by advertising expert Waldo Warren (White 1944). The word appears in a 1907 article by Lee de Forest, was adopted by the United States Navy in 1912 and became common by the time of the first commercial broadcasts in the United States in the 1920s. (The noun 'broadcasting' itself came from an agricultural term, meaning 'scattering seeds'.) The term was then adopted by other languages in Europe and Asia, although British Commonwealth countries continued to use the term 'wireless' until the mid-20th century.
In recent years the term 'wireless' has gained renewed popularity through the rapid growth of short-range computer networking, e.g., Wireless Local Area Network (WLAN), WiFi and Bluetooth, as well as mobile telephony, e.g., GSM and UMTS. Today, the term 'radio' often refers to the actual transceiver device or chip, whereas 'wireless' refers to the system and/or method used for radio communication, hence one talks about radio transceivers and Radio Frequency Identification (RFID), but about wireless devices and wireless sensor networks.


see Invention of radio Although invention was long attributed to Guglielmo Marconi, the identity of the original inventor of radio, at the time called wireless telegraphy, is contentious Development from a laboratory demonstration to commercial utility spanned several decades and required the efforts of many practitioners. The controversy over who invented the radio, with the benefit of hindsight, can be broken down as follows:
  • In 1887, David E. Hughes transmitted signals by radio using a clockwork-keyed Spark Transmitter, achieving a range of approximately 500 metres.
  • In 1888, Heinrich Hertz produced and measured the Ultra High Frequency range (via a sparkgap transmitter).
  • In 1891, Nikola Tesla began wireless research. He developed means to reliably produce radio frequencies, publicly demonstrated the principles of radio, and transmitted long-distance signals.
  • Between 1893 and 1894, Roberto Landell de Moura, a Brazilian priest and scientist, conducted experiments. He did not publicise his achievement until 1900 but later obtained Brazilian patent.
  • In 1894 in Kolkata (Calcutta), Sir Jagdish Chandra Bose (J. C. Bose) invented the mercury coherer, together with the telephone receiver.
  • Alexander Stepanovich Popov, in 1894, built his first radio receiver, which contained a coherer, although in actuality the coherer was first invented by Edouard Branly. Popov demonstrated the coherer, further refined as a lightning detector, to the Russian Physical and Chemical Society on May 7, 1895.
  • In 1894, Guglielmo Marconi read about Hertz's and Tesla's work on wireless telegraphy, and began his own experiments.
  • In March 1897 Marconi transmitted wireless telegraphy signals over a distance of two miles on Salisbury Plains, followed in May 1897 by a test over water between Lavernock and Flat Holm in the Bristol Channel, a distance of just over three miles. He then moved the receiving equipment to Brean Down Fort and extended the range to just under ten miles.
  • In December of 1901 Guglielmo Marconi used J.C. Bose's inventions to receive the radio signal in his first transatlantic radio communication over a distance of from Poldhu, UK, to St. Johns, Newfoundland. Marconi was celebrated worldwide for this achievement. Soon after the patent was given to Marconi. He even received the Nobel Prize.
  • In early 1900s Reginald Fessenden and Lee de Forest invented amplitude-modulated (AM) radio) allowing an audio signal to be sent over the air.
  • In 1935 Edwin H. Armstrong invented frequency-modulated (FM) radio, so that an audio signal can avoid "static," that is, interference from electrical equipment and atmospherics.
  • In 1943, the U.S. Supreme Court acknowledged that Marconi's work wasn't original, and the patent ownership is given back to Nikola Tesla. However, Tesla died shortly before the decision was announced.


details History of radio In 1893, in St. Louis, Missouri, Nikola Tesla made devices for his experiments with electricity. Addressing the Franklin Institute in Philadelphia and the National Electric Light Association, he described and demonstrated in detail the principles of his wireless work. The descriptions contained all the elements that were later incorporated into radio systems before the development of the vacuum tube. He initially experimented with magnetic receivers, unlike the coherers (detecting devices consisting of tubes filled with iron filings which had been invented by Temistocle Calzecchi-Onesti at Fermo in Italy in 1884) used by Guglielmo Marconi and other early experimenters.
The first radio couldn't transmit sound or speech and was called the "wireless telegraph." The first public demonstration of wireless telegraphy took place in the lecture theater of the Oxford University Museum of Natural History on August 14, 1894, carried out by Professor Oliver Lodge and Alexander Muirhead. During the demonstration a radio signal was sent from the neighboring Clarendon laboratory building, and received by apparatus in the lecture theater.
In 1895 Alexander Stepanovich Popov built his first radio receiver, which contained a coherer. Further refined as a lightning detector, it was presented to the Russian Physical and Chemical Society on May 7, 1895. A depiction of Popov's lightning detector was printed in the Journal of the Russian Physical and Chemical Society the same year. Popov's receiver was created on the improved basis of Lodge's receiver, and originally intended for reproduction of its experiments.
In 1896, Marconi was awarded the British patent 12039, Improvements in transmitting electrical impulses and signals and in apparatus there-for, for radio. In 1897 he established the world's first radio station on the Isle of Wight, England. Marconi opened the world's first "wireless" factory in Hall Street, Chelmsford, England in 1898, employing around 50 people.
The next great invention was the vacuum tube detector, invented by Westinghouse engineers. On Christmas Eve, 1906, Reginald Fessenden used a synchronous rotary-spark transmitter for the first radio program broadcast, from Ocean Bluff-Brant Rock, Massachusetts. Ships at sea heard a broadcast that included Fessenden playing O Holy Night on the violin and reading a passage from the Bible. The first radio news program was broadcast August 31, 1920 by station 8MK in Detroit, Michigan. The first college radio station began broadcasting on October 14, 1920, from Union College, Schenectady, New York under the personal call letters of Wendell King, an African-American student at the school. That month 2ADD, later renamed WRUC in 1940, aired what is believed to be the first public entertainment broadcast in the United States, a series of Thursday night concerts initially heard within a radius and later for a radius. In November 1920, it aired the first broadcast of a sporting event. At 9 pm on August 27, 1920, Sociedad Radio Argentina aired a live performance of Richard Wagner's Parsifal opera from the Coliseo Theater in downtown Buenos Aires, only about twenty homes in the city had a receiver to tune in. Meanwhile, Regular entertainment broadcasts commenced in 1922 from the Marconi Research Centre at Writtle, England.
One of the first developments in the early 20th century (1900-1959) was that aircraft used commercial AM radio stations for navigation. This continued until the early 1960s when VOR systems finally became widespread (though AM stations are still marked on U.S. aviation charts). In the early 1930s, single sideband and frequency modulation were invented by amateur radio operators. By the end of the decade, they were established commercial modes. Radio was used to transmit pictures visible as television as early as the 1920s. Commercial television transmissions started in North America and Europe in the 1940s. In 1954, Regency introduced a pocket transistor radio, the TR-1, powered by a "standard 22.5 V Battery".
In 1960, Sony introduced its first transistorized radio, small enough to fit in a vest pocket, and able to be powered by a small battery. It was durable, because there were no tubes to burn out. Over the next 20 years, transistors replaced tubes almost completely except for very high-power uses. By 1963 color television was being regularly transmitted commercially, and the first (radio) communication satellite, TELSTAR, was launched. In the late 1960s, the U.S. long-distance telephone network began to convert to a digital network, employing digital radios for many of its links. In the 1970s, LORAN became the premier radio navigation system. Soon, the U.S. Navy experimented with satellite navigation, culminating in the invention and launch of the GPS constellation in 1987. In the early 1990s, amateur radio experimenters began to use personal computers with audio cards to process radio signals. In 1994, the U.S. Army and DARPA launched an aggressive, successful project to construct a software defined radio that can be programmed to be virtually any radio by changing its software program. Digital transmissions began to be applied to broadcasting in the late 1990s.

Uses of radio

Early uses were maritime, for sending telegraphic messages using Morse code between ships and land. The earliest users included the Japanese Navy scouting the Russian fleet during the Battle of Tsushima in 1905. One of the most memorable uses of marine telegraphy was during the sinking of the RMS Titanic in 1912, including communications between operators on the sinking ship and nearby vessels, and communications to shore stations listing the survivors.
Radio was used to pass on orders and communications between armies and navies on both sides in World War I; Germany used radio communications for diplomatic messages once its submarine cables were cut by the British. The United States passed on President Woodrow Wilson's Fourteen Points to Germany via radio during the war. Broadcasting began from San Jose in 1909, and became feasible in the 1920s, with the widespread introduction of radio receivers, particularly in Europe and the United States. Besides broadcasting, point-to-point broadcasting, including telephone messages and relays of radio programs, became widespread in the 1920s and 1930s. Another use of radio in the pre-war years was the development of detection and locating of aircraft and ships by the use of radar (RAdio Detection And Ranging).
Today, radio takes many forms, including wireless networks and mobile communications of all types, as well as radio broadcasting. Before the advent of television, commercial radio broadcasts included not only news and music, but dramas, comedies, variety shows, and many other forms of entertainment. Radio was unique among methods of dramatic presentation in that it used only sound. For more, see radio programming.


AM broadcast radio sends music and voice in the Medium Frequency (MF—0.300 MHz to 3 MHz) radio spectrum. AM radio uses amplitude modulation, in which the amplitude of the transmitted signal is made proportional to the sound amplitude captured (transduced) by the microphone while the transmitted frequency remains unchanged. Transmissions are affected by static and interference because lightning and other sources of radio that are transmitting at the same frequency add their amplitudes to the original transmitted amplitude. The most wattage an AM radio station in the United States and Canada is allowed to use is 50,000 watts and the majority of stations that emit signals this powerful were grandfathered in; these include WGN (AM), WJR, KGA and CKLW. In 1986 KTNN received the last granted 50,000 watt license.
FM broadcast radio sends music and voice with higher fidelity than AM radio. In frequency modulation, amplitude variation at the microphone causes the transmitter frequency to fluctuate. Because the audio signal modulates the frequency and not the amplitude, an FM signal is not subject to static and interference in the same way as AM signals. Due to its need for a wider bandwidth, FM is transmitted in the Very High Frequency (VHF—30 MHz to 300 MHz) radio spectrum. VHF radio waves act more like light, traveling in straight lines, hence the reception range is generally limited to about 50-100 miles. During unusual upper atmospheric conditions, FM signals are occasionally reflected back towards the Earth by the ionosphere, resulting in Long distance FM reception. FM receivers are subject to the capture effect, which causes the radio to only receive the strongest signal when multiple signals appear on the same frequency. FM receivers are relatively immune to lightning and spark interference.
High power is useful in penetrating buildings, diffracting around hills, and refracting for some distance beyond the horizon. Consequently, 100,000 watt FM stations can regularly be heard up to 100 miles (160 km) away, and farther (e.g., 150 miles, 240 km) if there are no competing signals. A few old, "grandfathered" stations do not conform to these power rules. WBCT-FM (93.7) in Grand Rapids, Michigan, runs 320,000 watts ERP, and can increase to 500,000 watts ERP by the terms of its original license. Such a huge power level does not usually help to increase range as much as one might expect, because VHF frequencies travel in nearly straight lines over the horizon and off into space. Nevertheless, when there were fewer FM stations competing, this station could be heard near Bloomington, Illinois, almost 300 miles (500 km) away.
FM subcarrier services are secondary signals transmitted in a "piggyback" fashion along with the main program. Special receivers are required to utilize these services. Analog channels may contain alternative programming, such as reading services for the blind, background music or stereo sound signals. In some extremely crowded metropolitan areas, the sub-channel program might be an alternate foreign language radio program for various ethnic groups. Sub-carriers can also transmit digital data, such as station identification, the current song's name, web addresses, or stock quotes. In some countries, FM radios automatically re-tune themselves to the same channel in a different district by using sub-bands.
Aviation voice radios use VHF AM. AM is used so that multiple stations on the same channel can be received. (Use of FM would result in stronger stations blocking out reception of weaker stations due to FM's capture effect). Aircraft fly high enough that their transmitters can be received hundreds of miles (or kilometres) away, even though they are using VHF.
Marine voice radios can use single sideband voice (SSB) in the shortwave High Frequency (HF—3 MHz to 30 MHz) radio spectrum for very long ranges or narrowband FM in the VHF spectrum for much shorter ranges. Narrowband FM sacrifices fidelity to make more channels available within the radio spectrum, by using a smaller range of radio frequencies, usually with five kHz of deviation, versus the 75 kHz used by commercial FM broadcasts, and 25 kHz used for TV sound.
Government, police, fire and commercial voice services also use narrowband FM on special frequencies. Early police radios used AM receivers to receive one-way dispatches.
Civil and military HF (high frequency) voice services use shortwave radio to contact ships at sea, aircraft and isolated settlements. Most use single sideband voice (SSB), which uses less bandwidth than AM. On an AM radio SSB sounds like ducks quacking. Viewed as a graph of frequency versus power, an AM signal shows power where the frequencies of the voice add and subtract with the main radio frequency. SSB cuts the bandwidth in half by suppressing the carrier and (usually) lower sideband. This also makes the transmitter about three times more powerful, because it doesn't need to transmit the unused carrier and sideband.
TETRA, Terrestrial Trunked Radio is a digital cell phone system for military, police and ambulances. Commercial services such as XM, WorldSpace and Sirius offer encrypted digital Satellite radio.


Mobile phones transmit to a local cell site (transmitter/receiver) that ultimately connects to the public switched telephone network (PSTN) through an optic fiber or microwave radio and other network elements. When the mobile phone nears the edge of the cell site's radio coverage area, the central computer switches the phone to a new cell. Cell phones originally used FM, but now most use various digital modulation schemes. Recent developments in Sweden (such as DROPme) allow for the instant downloading of digital material from a radio broadcast (such as a song) to a mobile phone. Satellite phones use satellites rather than cell towers to communicate. They come in two types: INMARSAT and Iridium. Both types provide world-wide coverage. INMARSAT uses geosynchronous satellites, with aimed high-gain antennas on the vehicles. Iridium uses 66 Low Earth Orbit satellites as the cells.


Television sends the picture as AM and the sound as FM, with the sound carrier a fixed frequency (4.5 MHz in the NTSC system) away from the video carrier. Analog television also uses a vestigial sideband on the video carrier to reduce the bandwidth required.
Digital television uses 8VSB modulation in North America (under the ATSC digital television standard), and COFDM modulation elsewhere in the world (using the DVB-T standard). A Reed-Solomon error correction code adds redundant correction codes and allows reliable reception during moderate data loss. Although many current and future codecs can be sent in the MPEG-2 transport stream container format, as of 2006 most systems use a standard-definition format almost identical to DVD: MPEG-2 video in Anamorphic widescreen and MPEG layer 2 (MP2) audio. High-definition television is possible simply by using a higher-resolution picture, but H.264/AVC is being considered as a replacement video codec in some regions for its improved compression. With the compression and improved modulation involved, a single "channel" can contain a high-definition program and several standard-definition programs.


All satellite navigation systems use satellites with precision clocks. The satellite transmits its position, and the time of the transmission. The receiver listens to four satellites, and can figure its position as being on a line that is tangent to a spherical shell around each satellite, determined by the time-of-flight of the radio signals from the satellite. A computer in the receiver does the math.
Radio direction-finding is the oldest form of radio navigation. Before 1960 navigators used movable loop antennas to locate commercial AM stations near cities. In some cases they used marine radiolocation beacons, which share a range of frequencies just above AM radio with amateur radio operators. Loran systems also used time-of-flight radio signals, but from radio stations on the ground. VOR (Very High Frequency Omnidirectional Range), systems (used by aircraft), have an antenna array that transmits two signals simultaneously. A directional signal rotates like a lighthouse at a fixed rate. When the directional signal is facing north, an omnidirectional signal pulses. By measuring the difference in phase of these two signals, an aircraft can determine its bearing or radial from the station, thus establishing a line of position. An aircraft can get readings from two VORs and locate its position at the intersection of the two radials, known as a "fix." When the VOR station is collocated with DME (Distance Measuring Equipment), the aircraft can determine its bearing and range from the station, thus providing a fix from only one ground station. Such stations are called VOR/DMEs. The military operates a similar system of navaids, called TACANs, which are often built into VOR stations. Such stations are called VORTACs. Because TACANs include distance measuring equipment, VOR/DME and VORTAC stations are identical in navigation potential to civil aircraft.


Radar (Radio Detection And Ranging) detects objects at a distance by bouncing radio waves off them. The delay caused by the echo measures the distance. The direction of the beam determines the direction of the reflection. The polarization and frequency of the return can sense the type of surface. Navigational radars scan a wide area two to four times per minute. They use very short waves that reflect from earth and stone. They are common on commercial ships and long-distance commercial aircraft.
General purpose radars generally use navigational radar frequencies, but modulate and polarize the pulse so the receiver can determine the type of surface of the reflector. The best general-purpose radars distinguish the rain of heavy storms, as well as land and vehicles. Some can superimpose sonar data and map data from GPS position.
Search radars scan a wide area with pulses of short radio waves. They usually scan the area two to four times a minute. Sometimes search radars use the doppler effect to separate moving vehicles from clutter. Targeting radars use the same principle as search radar but scan a much smaller area far more often, usually several times a second or more. Weather radars resemble search radars, but use radio waves with circular polarization and a wavelength to reflect from water droplets. Some weather radar use the doppler to measure wind speeds.

Data (digital radio)

Most new radio systems are digital, see also: Digital TV, Satellite Radio, Digital Audio Broadcasting. The oldest form of digital broadcast was spark gap telegraphy, used by pioneers such as Marconi. By pressing the key, the operator could send messages in Morse code by energizing a rotating commutating spark gap. The rotating commutator produced a tone in the receiver, where a simple spark gap would produce a hiss, indistinguishable from static. Spark gap transmitters are now illegal, because their transmissions span several hundred megahertz. This is very wasteful of both radio frequencies and power.
The next advance was continuous wave telegraphy, or CW (Continuous Wave), in which a pure radio frequency, produced by a vacuum tube electronic oscillator was switched on and off by a key. A receiver with a local oscillator would "heterodyne" with the pure radio frequency, creating a whistle-like audio tone. CW uses less than 100 Hz of bandwidth. CW is still used, these days primarily by amateur radio operators (hams). Strictly, on-off keying of a carrier should be known as "Interrupted Continuous Wave" or ICW or on-off keying (OOK).
Radio teletypes usually operate on short-wave (HF) and are much loved by the military because they create written information without a skilled operator. They send a bit as one of two tones. Groups of five or seven bits become a character printed by a teletype. From about 1925 to 1975, radio teletype was how most commercial messages were sent to less developed countries. These are still used by the military and weather services.
Aircraft use a 1200 Baud radioteletype service over VHF to send their ID, altitude and position, and get gate and connecting-flight data. Microwave dishes on satellites, telephone exchanges and TV stations usually use quadrature amplitude modulation (QAM). QAM sends data by changing both the phase and the amplitude of the radio signal. Engineers like QAM because it packs the most bits into a radio signal when given an exclusive (non-shared) fixed narrowband frequency range. Usually the bits are sent in "frames" that repeat. A special bit pattern is used to locate the beginning of a frame.
Communication systems that limit themselves to a fixed narrowband frequency range are vulnerable to jamming. A variety of jamming-resistant spread spectrum techniques were initially developed for military use, most famously for Global Positioning System satellite transmissions. Commercial use of spread spectrum begin in the 1980s. Bluetooth, most cell phones, and the 802.11b version of Wi-Fi each use various forms of spread spectrum.
Systems that need reliability, or that share their frequency with other services, may use "coded orthogonal frequency-division multiplexing" or COFDM. COFDM breaks a digital signal into as many as several hundred slower subchannels. The digital signal is often sent as QAM on the subchannels. Modern COFDM systems use a small computer to make and decode the signal with digital signal processing, which is more flexible and far less expensive than older systems that implemented separate electronic channels. COFDM resists fading and ghosting because the narrow-channel QAM signals can be sent slowly. An adaptive system, or one that sends error-correction codes can also resist interference, because most interference can affect only a few of the QAM channels. COFDM is used for WiFi, some cell phones, Digital Radio Mondiale, Eureka 147, and many other local area network, digital TV and radio standards.


Radio-frequency energy generated for heating of objects is generally not intended to radiate outside of the generating equipment, to prevent interference with other radio signals. Microwave ovens use intense radio waves to heat food. (Note: It is a common misconception that the radio waves are tuned to the resonant frequency of water molecules. The microwave frequencies used are actually about a factor of ten below the resonant frequency.) Diathermy equipment is used in surgery for sealing of blood vessels. Induction furnaces are used for melting metal for casting.

Amateur radio service

Amateur radio is a hobby in which enthusiasts purchase or build their own equipment and use radio for their own enjoyment. They may also provide an emergency and public-service radio service. This has been of great use, saving lives in many instances. Radio amateurs are licensed to use frequencies in a large number of narrow bands throughout the radio spectrum. They use all forms of encoding, including obsolete and experimental ones. Several forms of radio were pioneered by radio amateurs and later became commercially important including FM, single-sideband (SSB), AM, digital packet radio and satellite repeaters. Some amateur frequencies may be disrupted by power-line internet service.

Unlicensed radio services

Personal radio services such as Citizens' Band Radio, Family Radio Service, Multi-Use Radio Service and others exist in North America to provide simple, (usually) short range communication for individuals and small groups, without the overhead of licensing. Similar services exist in other parts of the world. These radio services involve the use of handheld units. The most common form of unlicensed radio is known as Free or Pirate radio. The main difference between the two is that a Free radio station does not advertise or make any money, while the Pirate station could not exist without adverts, payolas, etc.

Radio control (RC)

Radio remote controls use radio waves to transmit control data to a remote object as in some early forms of guided missile, some early TV remotes and a range of model boats, cars and airplanes. Large industrial remote-controlled equipment such as cranes and switching locomotives now usually use digital radio techniques to ensure safety and reliability.
In Madison Square Garden, at the Electrical Exhibition of 1898, Nikola Tesla successfully demonstrated a radio-controlled boat. He was awarded U.S. patent No. 613,809 for a "Method of and Apparatus for Controlling Mechanism of Moving Vessels or Vehicles."

The electromagnetic spectrum

Radio waves are a form of electromagnetic radiation, created whenever a charged object (in normal radio transmission, an electron) accelerates with a frequency that lies in the radio frequency (RF) portion of the electromagnetic spectrum. In radio, this acceleration is caused by an alternating current in an antenna. Radio frequencies occupy the range from a few tens of hertz to three hundred gigahertz, although commercially important uses of radio use only a small part of this spectrum. Other types of electromagnetic radiation, with frequencies above the RF range, are microwave, infrared, visible light, ultraviolet, X-rays and gamma rays. Since the energy of an individual photon of radio frequency is too low to remove an electron from an atom, radio waves are classified as non-ionizing radiation.


Energy autarkic radio technology consists of a small radio transmitter powered by environmental energy (push of a button, temperature differences, light, vibrations, etc.). A number of schemes have been proposed for Wireless energy transfer. Various plans included transmitting power using microwaves, and the technique has been demonstrated. (See Microwave power transmission). These schemes include, for example, solar power stations in orbit beaming energy down to terrestrial users.

See also



Further reading

  • Aitkin Hugh G. J. The Continuous Wave: Technology and the American Radio, 1900-1932 (Princeton University Press, 1985).
  • Briggs Asa. The History of Broadcasting in the United Kingdom (Oxford University Press, 1961).
  • De Forest, Lee. Father of Radio: The Autobiography of Lee de Forest (1950).
  • Ewbank Henry and Lawton Sherman P. Broadcasting: Radio and Television (Harper & Brothers, 1952).
  • Fisher, Marc Something In The Air: Radio, Rock, and the Revolution That Shaped A Generation (Random House, 2007).
  • Leland I. Anderson (ed.), "John Stone Stone, Nikola Tesla's Priority in Radio and Continuous-Wave Radiofrequency Apparatus". The Antique Wireless Review, Vol. 1. 1986. 24 pages, illustrated.
  • Maclaurin W. Rupert. Invention and Innovation in the Radio Industry (The Macmillan Company, 1949).
  • Ray William B. FCC: The Ups and Downs of Radio-TV Regulation (Iowa State University Press, 1990).
  • Scannell, Paddy, and Cardiff, David. A Social History of British Broadcasting, Volume One, 1922-1939 (Basil Blackwell, 1991).
  • Schwoch James. The American Radio Industry and Its Latin American Activities, 1900-1939 (University of Illinois Press, 1990).
  • Sterling Christopher H. Electronic Media, A Guide to Trends in Broadcasting and Newer Technologies 1920-1983 (Praeger, 1984).
  • White Llewellyn. The American Radio (University of Chicago Press, 1947).

External links

radio in Amharic: ራዲዮ
radio in Old English (ca. 450-1100): Ūtweorp
radio in Arabic: مذياع
radio in Asturian: Radio (mediu de comunicación)
radio in Azerbaijani: Radio
radio in Bengali: বেতার
radio in Min Nan: La-jí-oh
radio in Belarusian (Tarashkevitsa): Радыё
radio in Breton: Skingomz
radio in Bulgarian: Радио
radio in Catalan: Ràdio
radio in Czech: Rozhlas
radio in Welsh: Radio
radio in Danish: Radiofoni
radio in Pennsylvania German: Reedio
radio in German: Rundfunk
radio in Estonian: Raadio
radio in Modern Greek (1453-): Ραδιόφωνο
radio in Spanish: Radio (medio de comunicación)
radio in Esperanto: Radio
radio in Basque: Irrati
radio in Persian: رادیو
radio in French: Récepteur radio
radio in Irish: Raidió
radio in Galician: Radio (medio de comunicación)
radio in Korean: 라디오
radio in Hindi: रेडियो
radio in Croatian: Radio
radio in Ido: Radio
radio in Indonesian: Radio
radio in Icelandic: Útvarp
radio in Italian: Radio (elettronica)
radio in Hebrew: רדיו
radio in Javanese: Radhio
radio in Kurdish: Radyo
radio in Latin: Radiophonia
radio in Latvian: Radio
radio in Lithuanian: Radijas
radio in Hungarian: Rádió
radio in Macedonian: Радио
radio in Malayalam: റേഡിയോ
radio in Mongolian: Радио
radio in Dutch: Radio
radio in Cree: ᑳᔭᒦᒪᑲᐦᒡ
radio in Nepali: रेडियो
radio in Japanese: ラジオ
radio in Norwegian: Radio
radio in Uzbek: Radio
radio in Pushto: راډيو
radio in Polish: Radio
radio in Portuguese: Rádio (comunicação)
radio in Romanian: Radio
radio in Quechua: Ankichiy
radio in Russian: Радио
radio in Samoan: Letiō
radio in Albanian: Radio
radio in Simple English: Radio
radio in Slovak: Rozhlas
radio in Slovenian: Radio
radio in Serbian: Радио
radio in Finnish: Radio
radio in Swedish: Radio
radio in Tagalog: Radyo
radio in Tamil: வானொலி
radio in Turkish: Radyo
radio in Ukrainian: Радіо
radio in Venetian: Radio
radio in Yiddish: ראדיא
radio in Dimli: Radyo
radio in Chinese: 无线电

Synonyms, Antonyms and Related Words

AM receiver, AM tuner, AM-FM receiver, AM-FM tuner, CB, RDF, Teletype, Wirephoto, advice, adviser, air, announce, announcer, annunciator, audio-frequency, authority, auto radio, automation, aviation radio, avionics, battery radio, beam, broadcast, broadcast journalism, cabinet, cable, channel, chassis, citizens band, communicant, communication, communicational, communications, communicator, console, crystal set, disseminate, electron microscopy, electron optics, electron physics, electronic engineering, electronics, electrophysics, enlightener, expert witness, facsimile, flash, gossipmonger, grapevine, heterodyne, high-frequency, housing, informant, information, information center, information medium, informer, intelligence, interviewee, journalism, line radio, magnetotelephonic, microtelephonic, monitor, monotelephonic, mouthpiece, multiplex receiver, news, news agency, news medium, news service, newscast, newsiness, newsletter, newsmagazine, newsmonger, newspaper, newsworthiness, notifier, photoelectricity, phototelegraphic, pocket radio, present, press, press association, public relations officer, publisher, radar, radiate, radio direction finder, radio receiver, radio set, radio telescope, radio-record player, radiobroadcast, radionics, radiophone, radiophotography, radiotelegraphic, radiotelegraphy, radiotelephony, railroad radio, receiver, receiving set, regenerative receiver, relay receiver, reportage, reporter, send, send a wire, set, ship-to-shore radio, shortwave, sign off, sign on, signal, source, spokesman, sportscast, superheterodyne, table radio, telecommunicational, telegram, telegraph, telegraph agency, telegraphic, telephonic, telephotographic, television, telex, teller, the fourth estate, the press, thermotelephonic, tidings, tipster, tout, transceiver, transistor, transistor physics, transmit, transmit-receiver, tuner, walkie-talkie, wire, wire service, wire wave communication, wired radio, wired wireless, wireless, wireless set, wireless telegraphy, wireless telephony, witness, word
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1